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Binary ferromagnet-normal metal superlattices
for quantum sensing

Mikhail Belogolovskii1,2, Ivan Nevirkovets3

1Kyiv Academic University, Kyiv, Ukraine
2Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics,

Comenius University, Bratislava, Slovak Republic
3Northwestern University, Evanston, USA

As emphasized in a recent review [1], we are at the dawn of an era of layered quantum materi-
als, which have proven their great potential as scalable components of quantum devices, including
nanoscale sensors, and have made it possible to create new quantum phases of matter. In the contri-
bution, we present our results on synthetic binary superlattices formed by nanometer-thick layers
of normal and ferromagnetic metals, quantum transport through which unexpectedly demonstrates
the formation of edge states, which are resistant to disorder and other mobile charge interactions.
The idea of the experiments was inspired by a paradigmatic explanation of the plateaus in transver-
sal transport characteristics of 2D conductors at very low temperatures and strong magnetic fields
(the integer quantum Hall effect) that is based on the existence of narrow near-boundary quantum
channels of non-interacting electrons created at the Fermi level in strongly disordered electron
systems [2]. The edge states are chiral in the sense that they can carry current only in one fixed
direction. At the same time, they are topologically protected and their number cannot vary under
continuous transformation of the system. This approach assumes the presence of a disordered and
isotropic two-dimensional electron gas. Our aim was to create a strongly anisotropic 3D system
with edge channels concentrated mainly at the hinges of the structure, i.e., a synthetic material
with one or two 1D conducting modes.

The anisotropy in our samples is arising due to the layered structure where the diffusion coefficient
for the charge motion across metallic layers (D⊥) is much smaller than that along them (D∥). In
this case, the dephasing effect is characterized by the average ⟨exp(−iφ)⟩ of the phase factor φ

calculated along all diffusive paths. If the related point belongs to the central region of the sample,
a huge number of contributions with random signs largely cancel each other yielding ⟨exp(−iφ)⟩ to
be proportional to exp(−d2/l2

B) with l2
B = Φ0/

√
D∥/D⊥B; here, Φ0 is the magnetic flux quantum,

and B is the magnetic flux density within the superlattice. In contrast to the central part of the
superlattice, the presence of a nearby boundary imposes a sharp geometrical constraint on the
allowed paths and near-surface trajectories are surviving. This is even more appropriate for 1D
hinge states localized at the intersection of two surfaces. The presence of two hinge states at
opposite edges of the superlattice can induce beats between their contributions.

However, the disorder factor is insufficient to guarantee the chirality of the edge states in the ab-
sence of the magnetic field or in the presence of a very weak field. For this, a source of the
internally broken time-reversal symmetry is needed. It can be realized in a magnetically frustrated
system where scattering off from spin clusters can generate an enhanced skew (asymmetric) scat-
tering potential, one of the major mechanisms causing anomalous Hall effect in the absence of
the magnetic field, and even without the spin-orbit interaction [3]. Hence, combination of the two
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factors – hinge states surviving in the strongly disordered and anisotropic material and the skew
scattering by small ferromagnetic nanoparticles – can generate the chiral edge currents.

One of the best ways to probe spatial current distributions is Josephson interferometry in a stacked
(layered) configuration where the hybrid structure under study links two superconducting (S) elec-
trodes. The figure of merit in such experiments is the maximum supercurrent (Ic) versus in-plane
magnetic field (H). In our experiments, we applied this technique to study the transport of Cooper
pairs through a periodic multilayer formed by ten normal metal (Al) - ferromagnetic metal (Ni or
Ni-Fe alloy) bilayers. For the first time, we observed SQUID-like (Ic(H)) oscillations instead of
conventional Fraunhofer patterns expected for trivial S-weak link-S junctions. Multilayers were
deposited in situ by DC magnetron sputtering of the respective materials onto oxidized Si sub-
strates at room temperature. The multilayered Josephson junctions were patterned using optical
lithography, reactive ion etching, Ar ion milling, and anodization followed by deposition of addi-
tional SiO2 insulation. Our first experimental results on the multilayered samples can be found in
the publications [4,5].

Using Ic(H) characteristics for S(NF)10NI(NF)10NS samples, we reconstructed the supercurrent-
density spatial dependence. In chiral channels, an electron propagating along the interface with a
superconductor could be reflected as a hole moving in the same chiral direction, then reflected as
an electron and so on. Such combination of Andreev reflections with the chiral motion yields chi-
ral Andreev edge states transferring superconducting correlations between S electrodes. We have
found that the transport channels are strongly asymmetric with respect to the weak-link center and
possibly one-dimensional. The strong asymmetry reveals itself also in the prominent upward shift
of the periodic Ic(H) curves while the amazing survival of edge transport in spite of the numerous
scatterings at the boundaries of the neighboring layers remains unclear and may suggest a topolog-
ical nature of the near-surface modes. The two important results, at overwhelming contribution of
the supercurrent unidirectional motion inside the multilayer and the double period of Ic(H) oscilla-
tions, may point to the realization of chiral Andreev edge states in the samples studied. Additional
evidence in favor of this assumption would be direct observation of specific Andreev scattering,
in which an electron propagating along the interface of the hybrid (NF)n multilayer with a super-
conducting film can be Andreev-reflected only as a hole flowing in the same chiral direction, see
above.

For this purpose, we fabricated new samples with an additional SIS junction playing the role of a
“bottleneck” inside the weak link and thus controlling the current flowing through the whole het-
erostructure. Strong hysteresis in the current-voltage curves and its virtual absence in S(NF)10NI-
(NF)10NS miltilayers confirms the dominance of charge transfer through the SIS contact. By
measuring its dependence on an external in-plane magnetic field, we could verify whether the su-
percurrent flows through the SIS junction along its edges, as it would be in the case of helical
states, or it flows across the entire junction that would be a transport signature of chiral Andreev
edge currents. Pursuing this goal, we replaced one of the outside S electrodes in the S(NF)10NS
heterostructure with a conventional Josephson Nb/Al/AlOx/Al/Nb (SNINS) junction. Comparing
the Fraunhofer pattern in such devices with those measured for conventional ones, we can see that
the supercurrent distribution over the outside S film is fairly uniform. The remaining asymmetry
leads to the absence of nodes in the Fraunhofer-like pattern and lack of strict periodicity of the
minima. Since the scattering probabilities at corners of the interface between the weak-link edges
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and an S electrode strongly depend on their geometries, the values of the critical current in such
configuration are small and highly variable.

In the second type of heterostructures, an I interlayer in the S(NF)10NI(NF)10NS mulilayers dis-
cussed above was replaced with an SNINS junction. In this configuration, the internal Josephson
SNINS junction is placed between two (NF)10N multilayers. We have found that the main pe-
riod of the diffraction pattern in such samples is determined by the SNINS junction parameters,
whereas small-amplitude “ripples” observed in experimental Ic(H) curves are associated with the
presence and properties of the (NF)10N multilayers. The principal dissimilarity with the previous
samples is that the two magnetic (NF)10N subsystems are separated by a superconducting junc-
tion shielding their mutual interaction and weakening magnetic exchange coupling, allowing thus
various orientations of the magnetizations. As a rule, in multilayered systems similar to ours,
an out-of-plane magnetic anisotropy is observed. Tunnel junction with a very thin oxide barrier
and magnetic electrodes formed by perpendicularly magnetized films usually display their anti-
ferromagnetic coupling, whereas similar structures with in-plane magnetized electrodes exhibit
conventional ferromagnetic coupling. Nevertheless, when the spacer is a superconducting film,
the coupling of ferromagnetic layers via superconducting current induces antiferromagnetic-like
interaction between them.

Resuming, we would like to emphasize that unidirectional and backscatter-free propagation of
charge carriers in three-dimensional materials is of fundamental interest in physics and high de-
mand for quantum technologies thanks to possibility of novel excitations like chiral Majorana
fermions. In this regard, great hopes are associated with the implementation of higher-order topo-
logical insulators characterized by hinge states protected by various spatiotemporal symmetries.
In the work, we demonstrate signatures of such non-trivial edge modes in stacked binary multi-
layers formed by conventional normal and magnetic nm-thick metallic films placed between two
superconducting electrodes. Our main findings are as follows:

- The emergence of non-trivial edge transport modes occurs in (NF)nN multilayers with a suffi-
ciently large number n of bilayers. Despite a huge number of electronically mismatched interfaces
and the presence of magnetic nanoparticles (most probably, in a superparamagnetic regime) the
phase-coherent charge transport stays quantum.

- The bulk of the (NF)nN weak link is not involved in the transfer of Cooper pairs between two
superconducting Nb electrodes. It is carried out via Andreev bound states localized near the edges
of the (NF)nN periodic structure. If we take into account the sizes of only this region, the values of
superconducting critical parameters match those for highest-quality SIS Josephson junctions made
with conventional niobium technology.

- Permanent observation of a single (sometimes two) period in the critical supercurrent Ic versus
probing in-plane magnetic field H patterns indicates quasi-one-dimensional nature of the near-edge
current(s) which are mostly unidirectional with a small part of oppositely moving quasiparticles.

M.B. acknowledges the EU NextGenerationEU financial support through the Recovery and Re-
silience Plan for Slovakia under the project 09I03-03-V01-00139. I.N. received support from the
NSF grant DMR 1905742 and from the NSF DISCoVER Exp. award under grant CCF-2124453.
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Towards the problem of propagation of correlations
in open systems

Igor Gapyak

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

One of the challenging problems of the theory of open quantum systems consists in the rigor-
ous derivation of the master kinetic equation with initial correlations, that is, a quantum kinetic
Fokker-Planck type equation, which takes into account the evolution of initial correlations, from
the dynamics of many particles. The solution to this problem, in particular, is related to the ques-
tion of the mechanism of stochastic behavior in dynamic systems of many particles.

Recently, in particular, when studying applied issues related to the propagation of correlations
between the system and environment, the problems of the dynamics of the initially correlated
open quantum systems began to be investigated systems. This work is devoted to a mathematical
derivation of the quantum kinetic equation for a traced particle, with initial correlations between
the traced particle and the environment. Such a traced particle can be characterized by a different
mass or a special potential for interaction with the environment. Initial correlations between states
refer to situations where the quantum states of a composite system are correlated with each other
at the beginning of a quantum process. These correlations can arise from previous interactions or
preparations of the subsystems. In a number of works that investigate quantum computing and
quantum technologies, taking into account the initial correlations between the isolated quantum
subsystem and the quantum environment is of crucial importance.

In modern works, the main approach to the study of the collective behavior of open systems con-
sists in the construction of scaling approximations, for example, the diffusion limit, for the solution
of evolution equations that describe the evolution of the state of a system of many particles, which
consists of a traced particle in the environment of many particles. For a system with an infinite
number of particles, this is a perturbative solution of the BBGKY (Bogolyubov–Born–Green–Kirk-
wood–Yvon) hierarchy for open systems.

In the talk, based on the non-perturbative solution of the BBGKY hierarchy for the reduced density
operators of an open quantum system, a new approach to the rigorous derivation of the Fokker–
Planck type kinetic equation with initial correlations is proposed. In particular, this approach
makes it possible to describe the process of propagation of initial correlations in open quantum
systems.

Let the n-particle space Hn = H ⊗n is a tensor product of n Hilbert spaces H and H0 = C.
We denote FH = ⊕∞

n=0H1 ⊗Hn the Fock space. Let L1
α(FH ) be the space of sequences f =

( f0, f1+0, f1+1, . . . , f1+n, . . .) of trace class operators f1+n ≡ f1+n(t,1, . . . ,n) ∈ L1(H1 ⊗Hn) and
f0 ∈C and for arbitrary (i1, . . . , in)∈ (1, . . . ,n) they satisfy the symmetry condition: f1+n(t,1, . . . ,n)=
f1+n(t, i1, . . . , in), and are equipped with the norm:∥∥ f

∥∥
L1

α (FH )
= sup

n≥0
α
−n Trt,1,...,n

∣∣ f1+n(t,1, . . . ,n)
∣∣,
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where Trt,1,...,n are partial traces and the parameter α > 0 is a real number. Let L1
0 ∈ L1

α(FH )
be the subset of finite sequences of degenerate operators with infinitely differentiable kernels with
compact supports.

The evolution of all possible states of an open quantum system is described by the sequences
F(t) = (F1+0(t, t),F1+1(t, t,1), . . . ,F1+s(t, t,1, . . . ,s), . . .)∈ FH ∈L1

α(FH ) of reduced density op-
erators, which are a non-perturbative solution of the Cauchy problem for the quantum BBGKY
hierarchy:

F1+s(t, t,1, . . . ,s) =
∞

∑
n=0

1
n!

Trs+1,...,s+n A1+n(t,{t,1, . . . ,s}, (2.1)

s+1, . . . ,s+n)F0
1+s+n(t,1, . . . ,s+n), s ≥ 0.

The generating operator of the n-th term of the series (2.1) is determined by the cumulant of the
(n+1)-th order one-parameter group of operators:

A1+n(t,{t,1, . . . ,s},s+1, . . . ,s+n) =

∑
P:({t,1,...,s},s+1,...,s+n)=

⋃
iXi

(−1)|P|−1(|P|−1)! ∏
Xi⊂P

G ∗
|θ(Xi)|(t,θ(Xi)),

where ∑P means the sum over all possible partitions P of the set ({t,1, . . . ,n},s+ 1, . . . ,s+ n)
on |P| nonempty subsets Xi ⊂ ({t,1, . . . ,n},s+ 1, . . . ,s+ n) which do not mutually intersect, the
set {t,1, . . . ,n} consists from one element, that is |{t,1, . . . ,n}| = 1 and the operator θ is the
declusterization mapping: θ({t,1, . . . ,n}) = (t,1, . . . ,n). On the space of trace class operators
L1(H1 ⊗Hn) is defined one-parameter group of operators:

G ∗
1+n(t) f1+n

.
= e−itH1+n f1+neitH1+n,

where the operator H1+n is the Hamiltonian of the system of the traced particle and n particles of
the environment:

H1+n = H1+0(t)⊗ I+ I⊗H0+{n}(1, . . . ,n)+H1+{n}(t,1, . . . ,n),

where H1+0(t)=K(t) is the operator of the kinetic energy of the traced particle, H1+{n}(t,1, . . . ,n)=
∑

n
j=1 Φ(t, j) is the operator of the pair interaction potential of the traced particle with the envi-

ronment and H0+{n}(1, . . . ,n) = ∑
n
j=1 K( j)+∑

n
j1< j2=1 Φ( j1, j2) is the Hamiltonian operator of n

particles of the environment.

We will consider the initial states of the open quantum system, which are described by a sequence
of the following reduced density operators:

F1+n(t)|t=0 = F0
1+0(t)F

0
0+n(1, . . . ,n)g1+n(t,1, . . . ,n), n ≥ 0, (2.2)

where the operator g1+n ∈ L(H1 ⊗Hn) describes the correlations of the states of the traced quan-
tum particle and its environment at the initial moment of time.

Due to the fact that the sequence of initial reduced density operators (2.2) depends on the initial
reduced density operator of a traced particle, the Cauchy problem for the corresponding quantum
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BBGKY hierarchy is not uniquely defined, so it can be reformulated as a new Cauchy problem for
the evolutionary equation for the reduced density operator of the traced particle and a sequence of
explicitly defined functionals of the solution of the Cauchy problem of the evolution equation for
a one-particle density operator.

Since the initial state of the open quantum system is determined by the initial state of the traced
particle (2.2), the state of the system at an arbitrary moment in time (2.1) can also be described in
an equivalent way using a sequence of reduced functionals of the state [1-3]:

F(t | F1(t)) = (F1+0(t, t),F1+1(t, t,1 | F1+0(t)), . . . ,F1+s(t, t,1, . . . ,s | F1+0(t)), . . .).

The reduced functionals of states F1+s(t, t,1, . . . ,s | F1+0(t)), s ≥ 1 are represented by the follow-
ing expansions in a series:

F1+s
(
t, t,1, . . . ,s | F1+0(t)

) .
=

∞

∑
n=0

1
n!

Trs+1,...,s+n V1+n(t,{t,1, . . . ,s},s+1, . . . ,s+n)F1+0(t, t), (2.3)

where examples of the first two evolutionary operators V1+n(t) are defined by the following ex-
pressions:

V1(t,{t,1, . . . ,s}) = A1(t,{t,1, . . . ,s})F0
0+s(1, . . . ,s)g1+s(t,1, . . . ,s)A1(−t, t),

V2(t,{t,1, . . . ,s},s+1) = A2(t,{t,1, . . . ,s},s+1)F0
0+s+1(1, . . . ,s+1)g1+s+1(t,1, . . . ,s+1)

A1(−t, t)−A1(t,{t,1, . . . ,s})F0
0+s(1, . . . ,s)g1+s(t,1, . . . ,s)

A1(−t, t)A2(t, t,s+1)F0
0+1(s+1)g1+1(t,s+1)A1(−t, t).

In general case, the operator V1+n(t) is defined in Refs. [1,2].

The one-particle density operator for a traced particle is determined by the Cauchy problem for the
quantum Fokker – Planck type equation:

∂

∂ t
F1+0(t, t) = N (t)F1+0(t, t)+Tr1 Nint(t,1)F1+1(t, t,1 | F1+0(t)), (2.4)

F1+0(t, t)|t=0 = F0
1+0(t). (2.5)

In equation (2.4), the marginal functional is represented by the expansion in the series (2.3) in the
case s = 1 and operators N (t) and Nint(t,1) of the von Neumann equation generator are defined
on the subspace L1

0(H1 ⊗H1) according to the following formulas:

N (t) f1+s
.
=−i

(
K(t) f1+s − f1+s K(t)

)
, Nint(t,1) f1+s

.
=−i

(
Φ(t,1) f1+s − f1+s Φ(t,1)

)
.

We emphasize that the coefficients of the kinetic equation (2.4) are determined by the initial cor-
relations of the states of the traced particle and its environment.

Thus, if the initial states are determined by a sequence of reduced density operators (2.2), then
the evolution of all possible states of an open quantum system can be described without any ap-
proximations using the reduced density operator of a traced particle, which is a solution of the
Cauchy problem for the generalized quantum Fokker – Planck type kinetic equation (2.4), (2.5),
and a sequence of functionals from such an operator (2.3).
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Dynamics of quantum correlations and kinetic equations
Viktor Gerasimenko

Institute of mathematics of the NAS of Ukraı̈ne, Kyı̈v, Ukraı̈ne

The talk provides an overview of some advances in the mathematical understanding of the nature
of the kinetic equations of quantum systems of many particles. The fundamental equations of
modern mathematical physics are studied, in particular, the hierarchies of evolution equations of
quantum systems and their asymptotic behavior described by kinetic nonlinear equations [1].

Firstly, we discuss an approach to describing the correlations in a system of many quantum parti-
cles based on the hierarchy of evolution equations for the sequence of correlation operators, which
are cumulants of the density operators (the von Neumann hierarchy). It is proved that the con-
structed dynamics of correlations underlies the description of the dynamics of both finitely and
infinitely many quantum particles, governed by the BBGKY hierarchies for reduced (marginal)
density operators or reduced correlation operators [2].

The structure of expansions by which are represented non-perturbative solutions of the Cauchy
problem to these hierarchies of evolution equations of quantum systems is formulated. It is es-
tablished that the concept of cumulants of the groups of operators of the von Neumann equations
underlies non-perturbative expansions of solutions to hierarchies of fundamental equations that de-
scribe the evolution of observables and of the state of many quantum particles, as well as it forms
the basis of the kinetic description of its collective behavior [3].

In the talk, we also consider a new approach to the problem of a rigorous description of kinetic
evolution by means of reduced (marginal) observables governed by the dual BBGKY hierarchy.
One of the advantages of the developed approach to the derivation of kinetic equations from un-
derlying dynamics of many particles consists of an opportunity to construct kinetic equations with
initial correlations, in particular, correlations characterizing the condensed states of a system, and
to describe the processes of the propagation of initial correlations in suitable scaling limits. For
this purpose, some results obtained for collisional dynamics [4,5] were generalized for quantum
many-particle systems.

Firstly, we answer the following question: ”What does kinetic evolution mean in terms of the
evolution of observables of quantum systems?”

In what follows, we will use the notation accepted in the work [1].

If at the initial moment an observable is determined by the sequence of reduced observables
B(0) = (B0,B0

1(1), . . . ,B
0
s (1, . . . ,s), . . .) ∈ L(FH ), then for arbitrary t ∈ R the sequence B(t) =

(B0,B1(t,1), . . . ,Bs(t,1, . . . ,s), . . .) of reduced (marginal) observables satisfies the Cauchy prob-
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lem of the quantum dual BBGKY hierarchy:

∂

∂ t
Bs(t,1, . . . ,s) =

( s

∑
j=1

N ( j)+ ε

s

∑
j1< j2=1

Nint( j1, j2)
)
Bs(t,1, . . . ,s)+ (3.1)

+ε

s

∑
j1 ̸= j2=1

Nint( j1, j2)Bs−1(t,1, . . . , j1 −1, j1 +1, . . . ,s),

Bs(t,1, . . . ,s)|t=0 = B0
s (1, . . . ,s), s ≥ 1, (3.2)

where the generator N = ⊕∞
n=0Nn of the Heisenberg equation of n particles is defined by the

formula

Nngn
.
=−i(gnHn −Hngn), (3.3)

and the self-adjoint operator Hn = ∑
n
j=1K( j)+ ε∑

n
j1< j2=1Φ( j1, j2) is the Hamilton operator of a

system of n particles, that is, the operator K( j) is the kinetic energy operator of j particle, Φ is the
bounded operator of the pair interaction potential, ε > 0 is the mean field scaling parameter, and
here were used units where h = 2π h̄ = 1 is a Planck constant, m = 1 is particle mass.

The solution of the Cauchy problem (3.1),(3.2) is represented by the following expansions:

Bs(t,1, . . . ,s) =
s

∑
n=0

1
n!

s

∑
j1 ̸=...̸= jn=1

A1+n
(
t,{(1, . . . ,s)\ ( j1, . . . , jn)}, (3.4)

( j1, . . . , jn)
)

B0
s−n(1, . . . , j1 −1, j1 +1, . . . , jn −1, jn +1, . . . ,s), s ≥ 1,

where the generating operator of this expansion is the (1+ n)-th order cumulant of the groups of
operators Gn(t,1, . . . ,n), n ≥ 1, of the n-particle Heisenberg equation:

A1+n(t,{(1, . . . ,s)\ ( j1, . . . , jn)},( j1, . . . , jn))
.
=

∑
P:({(1,...,s)\( j1,..., jn)},( j1,..., jn))=

⋃
iXi

(−1)|P|−1(|P|−1)! ∏
Xi⊂P

G|θ(Xi)|(t,θ(Xi)), n ≥ 0,

and used notation accepted in the work [1].

Note that traditionally, the evolution of quantum many-particle systems is described within the
framework of the evolution of the state governed by the BBGKY hierarchy for reduced (marginal)
density operators [3].

To give an answer to the above-formulated question, we consider the scaling asymptotic behavior
of a solution of the Cauchy problem (3.4) for the dual BBGKY hierarchy (3.1), (3.2) in the case
of the mean-field limit, or, in other words, we consider the foundations of the description of the
kinetic evolution of systems of many quantum particles within the framework of observables.

Note that one of the advantages of such an approach to the description of kinetic evolution is the
possibility of describing the propagation of initial correlations in scaling limits. In other words,
such an approach to the derivation of kinetic equations allows us to formulate kinetic equations in
the case of more general initial states, which describe not only the gases of quantum particles but
also systems in condensed states.
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Suppose that at the initial moment of time there exists the mean-field limit of reduced observables
(3.2) in the sense of ∗-weak convergence of the space of bounded operators L(Hs)

w∗− lim
ε→0

(
ε
−sBε,0

s −b0
s
)
= 0, (3.5)

where ε > 0 is a scaling parameter.

Then the following limit theorem holds for reduced observables (3.4), which are the solution of
the dual BBGKY hierarchy (3.1).

If the condition (3.5) is satisfied, then for an arbitrary finite time interval there is a mean-field limit
for the sequence of reduced observables (3.4) in the same sense

w∗− lim
ε→0

(
ε
−sBs(t)−bs(t)

)
= 0, (3.6)

where the reduced observables bs(t), s ≥ 1, are determined by the following expansions:

bs(t,1, . . . ,s) =
s−1

∑
n=0

t∫
0

dt1 . . .

tn−1∫
0

dtn G 0
s (t − t1)

s

∑
i1 ̸= j1=1

Nint(i1, j1)G 0
s−1(t1 − t2) . . . (3.7)

G 0
s−n+1(tn−1 − tn)

s

∑
in ̸= jn = 1,

in, jn ̸= ( j1, . . . , jn−1)

Nint(in, jn)G 0
s−n(tn)b

0
s−n((1, . . . ,s)\ ( j1, . . . , jn)), s ≥ 1,

and for the group of operators of non-interacting particles, the notation was used

G 0
s−n+1(tn−1 − tn)≡ ∏

j∈(1,...,s)\( j1,..., jn−1)

G1(tn−1 − tn, j).

Thus, in the mean-field limit, the collective behavior (kinetic evolution) of quantum systems of
many particles is described in terms of the sequence of limiting reduced observables (3.7) whose
evolution is governed by the Cauchy problem of the dual Vlasov hierarchy (3.8),(3.9):

∂

∂ t
bs(t,1, . . . ,s) =

s

∑
j=1

N ( j)bs(t,1, . . . ,s)+
s

∑
j1 ̸= j2=1

Nint( j1, j2)bs−1(t,(1, . . . ,s)\ ( j1)), (3.8)

bs(t,1, . . . ,s) |t=0= b0
s (1, . . . ,s), s ≥ 1. (3.9)

Now we consider the relationship of collective behavior within the mean-field approximation de-
scribed by the dual Vlasov hierarchy (3.8) for the limiting observables and by the Vlasov kinetic
equation for the state of a typical particle in a system of many quantum particles. Let the initial
state of a quantum system of many particles be determined by a one-particle density operator and
correlation operators (Maxwell–Boltzmann statistics)

f (cc) =
(
I, f 0

1 (1),g
0
2(1,2)

2

∏
i=1

f 0
1 (i), . . . ,g

0
n(1, . . . ,n)

n

∏
i=1

f 0
1 (i), . . .

)
, (3.10)
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where the correlations of the initial states of the particles are determined by the operators g0
n ∈

L1
0(Hn), n ≥ 2. We emphasize that this assumption (3.10) with respect to the initial state is typical

for the kinetic description of systems of many particles in condensed states, which are characterized
by correlations.

Applying the method of derivation of kinetic equations based on the hierarchy of kinetic equations
for the observables [5], for an arbitrary finite time interval, we establish that the state is described
by the sequence f (t)=

(
I, f1(t), . . . , fn(t,1, . . . ,n), . . .

)
of limiting reduced density operators where

a one-particle density operator is governed by the quantum Vlasov kinetic equation with initial
correlations

∂

∂ t
f1(t,1) = N ∗(1) f1(t,1)+ (3.11)

Tr2 N ∗
int(1,2)

2

∏
i1=1

G ∗
1 (t, i1)g

0
2(1,2)

2

∏
i2=1

(G ∗
1 )

−1(t, i2) f1(t,1) f1(t,2),

and the limiting density operators fk(t,1, . . . ,k), k ≥ 2, are determined by the following expres-
sions:

fk(t,1, . . . ,k) =
k

∏
i1=1

G ∗
1 (t, i1)g

0
k(1, . . . ,k)

k

∏
i2=1

(G ∗
1 )

−1(t, i2)
k

∏
j=1

f1(t, j), k ≥ 2, (3.12)

where the inverse group of operators to group is denoted by (G ∗
1 )

−1(t).

We note that the kinetic equation (3.11) is a non-Markov kinetic equation. For pure states, equation
(3.11) reduces to the Hartree kinetic equation with initial correlations. For the initial states of
the system of statistically independent particles, the kinetic equation (3.11) coincides with the
quantum Vlasov equation, and reduced (marginal) density operators (3.12) describe the process of
propagation of the initial chaos.

Thus, the alternative method of describing the evolution of states of quantum systems of many
particles in the mean-field approximation is based on the non-Markovian Vlasov kinetic equation
with initial correlations (3.11). The above results can be extended to systems of many bosons or
fermions.

To describe the evolution of the states of quantum many-particle systems, there is an alternative
approach that is based on the dynamics of correlations [4]. In this approach, a state of finitely
many quantum particles is described with the employment of operators determined by the cluster
expansions of the density operators that are governed by the so-called von Neumann hierarchy. It
was established that the constructed dynamics of correlation underlie the description of the dynam-
ics of infinitely many quantum particles governed by the BBGKY hierarchy for marginal density
operators or the hierarchy of nonlinear evolution equations for marginal correlation operators, i.e.,
of the cumulants of marginal density operators [3]. We emphasize the importance of the math-
ematical description of the processes of the creation and propagation of correlations in quantum
systems, in particular, for numerous applications.

The purpose of this talk was to analyze the development and current advances of the theory of evo-
lution equations for systems of many quantum particles, in particular, quantum kinetic equations
and their relations to the fundamental equations that describe the laws of nature.



US-Ukraine Quantum Forum 2023 Conference Proceedings — 16

References
1. V.I. Gerasimenko, Kinetic equations and hierarchies of evolution equations of quantum systems, Preprint arXiv:2107.10872, (2021).

https://doi.org/10.48550/arXiv.2107.10872

2. V.I. Gerasimenko, Processes of creation and propagation of correlations in large quantum particle system, Panorama of Contemporary
Quantum Mechanics – Concepts and Applications. London: InTech, 2019, 31–47. https://doi.org/10.5772/intechopen.82836

3. V.I. Gerasimenko, Hierarchies of quantum evolution equations and dynamics of many-particle correlations, Statistical Mechanics and
Random Walks: Principles, Processes and Applications, N.Y.: Nova Sci. Publ., Inc., 2013, 233–288.

4. V.I. Gerasimenko, I.V. Gapyak, Propagation of correlations in a hard-sphere system. J. Stat. Phys. 189, 2 (2022).
https://doi.org/10.1007/s10955-022-02958-8

5. V.I. Gerasimenko, I.V. Gapyak, Advances in theory of evolution equations of many colliding particles, Modern Problems of Mathematics
and its Applications. Kyı̈v: IM, 729–804, 2023. https://doi.org/10.3842/trim.v20n1.528



US-Ukraine Quantum Forum 2023 Conference Proceedings — 17
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We propose quantum algorithms for the detection of the energy levels of spin systems on a quan-
tum computer. We show that the time dependence of the mean value of a physical quantity is
related to the energies of a quantum system in the case when the operator of the physical quantity
anticommutes with the Hamiltonian of the system [1]. Namely for the mean value of physical
quantity represented by operator Â the following relation is satisfied

A(t) = ⟨ψ(t)|Â|ψ(t)⟩= ∑
i, j

cic∗jAi jei2E jt/h̄, (4.1)

where |ψ(t)⟩ = e−iHt/h̄|ψ0⟩, H is the Hamiltonian of a system, |ψ0⟩ is an initial state, Ai j =
⟨Ei|Â|E j⟩ is matrix element of operator Â, |Ei⟩ are eigenstates of the Hamiltonian, ci are coeffi-
cients of expansion of initial state |ψ0⟩ over the eigenstates of the Hamiltonian |ψ0⟩ = ∑i ci|Ei⟩.
Therefore, studying the evolution of the mean value of the operator with quantum programming
gives the possibility to determine the energy levels. On the basis of the proposed algorithm energy
levels of spin systems, namely spin in a magnetic field, spin chain, Ising model on the squared
lattice are detected on IBM’s quantum computers [1,2].

In the case when for a given Hamiltonian the anticommuting operator does not exist, we propose a
quantum algorithm based on studies of the evolution of only one probe spin. For this purpose we
propose to construct the total Hamiltonian in the following form

HT = σ
z
0(H +C), (4.2)

where H is the Hamiltonian of the system, C is a constant added to shift the energy levels of H to
the positive ones, σ

z
0 is the Pauli matrix of additional spin (ancilla qubit). Note, that it is easy to

find operators that anticommute with the Hamiltonian HT . They are σ x
0 , σ

y
0 . So, on the basis of

studies of the time dependence of the mean value of σ x
0 or σ

y
0 , we can detect the energy levels of

the total Hamiltonian HT and therefore the energy levels of the system. The algorithm was applied
for studies of the energy levels of the spin chain in a magnetic field, triangle spin cluster, and Ising
model on a squared lattice in the magnetic field on IBM’s quantum device. The results of quantum
calculations are in agreement with the theoretical ones [3].

It is worth noting that the proposed quantum protocols are efficient for the estimation of the energy
levels of many-spin systems. The methods open the possibility of achieving quantum supremacy
with the development of multi-qubit quantum computers.
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On the basis of the proposed algorithms, we observe spin-1 tunneling on IBM’s quantum computer
[4]. We realize spin-1 with two spins-1/2. We detect the splitting of the energy levels as a result of
tunneling on IBM’s quantum device ibmq-bogota with studying of the evolution of probe spin.

Also, a quantum algorithm for the detection of the graph properties, namely the number of edges,
triangles, and squares in a graph is developed [5]. We consider graph states as follows

|ψ⟩= e−
it
2h̄ ∑i, j Ji jσ

x
i σ x

j |00...0⟩. (4.3)

The states can be represented by graphs with vertices corresponding to spins and edges represent-
ing interactions between them, Ji j are interaction coupling constants related to the elements of
adjacency matrix Ai j. We obtain that the geometric properties of evolutionary graph states of spin
systems with Ising Hamiltonian are related to the graph properties. Namely, we found that such
geometric characteristics as the velocity of quantum evolution, the curvature, and the torsion of the
states are related to the total number of edges, triangles, and squares. The relations read

v =
γJ
h̄

√
k2, (4.4)

κ̄ =
1
k2

2
(k2 +3k2(k2 −1)+4!k4)

2 −1, (4.5)

τ̄ = κ̄ −
62k2

3

k3
2
, (4.6)

where v is the velocity of quantum evolution, κ̄ is the curvature and τ̄ is the torsion, constants k2,
k3, k4 are the total number of edges, triangles and squares in the graph. The studies are based on
the relations of the geometric properties of evolutionary graph states with fluctuations of energy
obtained in [6].

Graph states corresponding to a chain, a triangle, and a square are studied. We apply the algorithm
to detect the number of edges, triangles, and squares in the corresponding graphs on IBM’s quan-
tum computer ibmq-manila [5]. The developed quantum algorithm gives a possibility to achieve
quantum supremacy in finding the number of edges, triangles, and squares in graphs with compli-
cated structures with the development of quantum devices.

We also study the geometric measure of entanglement of quantum graph states [7,8]. It is defined
as a minimal squared Fubini-Study distance between the entangled state | ψ⟩ and a set of non-
entangled states | ψs⟩,

E(| ψ⟩) = min
|ψs⟩

(1−|⟨ψ|ψs⟩|2), (4.7)

see [9]. In paper [10] it was obtained that the geometric measure of entanglement of a spin with a
quantum system in the state |ψ⟩ = a |0⟩ |Φ1⟩+ b |1⟩ |Φ2⟩ , (here a, b are constants, |Φ1⟩, |Φ2⟩ are
states of quantum system ⟨Φi | Φi⟩ = 1, i = 1,2) is related to its mean value. The relation has the
following form

E(| ψ⟩) = 1
2
(1−|⟨σσσ⟩|), (4.8)
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where |⟨σσσ⟩| =
√

⟨σσσ⟩. On the basis of the relation, we find analytically the geometric measure
of entanglement of a spin with other spins for graph states corresponding to the arbitrary graph
structure. We consider graph states prepared with the action of the operator of the evolution of
the Ising model (4.3). Also, graph states prepared with the action of the controlled phase shift
operator are studied.

|ψG(φ ,α,θ)⟩= ∏
(i, j)∈E

CPi j(φ) |ψ(α,θ)⟩⊗V , (4.9)

|ψ(α,θ)⟩= cos
θ

2
|0⟩+ eiα sin

θ

2
|1⟩ , (4.10)

here CPi j(φ) is the controlled phase shift gate that acts on the qubits q[i], q[ j]. The states are
associated with graph G(V,T ).

It is obtained that the geometric measure of entanglement of a spin is related to the degree of
vertex which represents it in the graph. In the case of quantum graph states (4.3) we find that the
entanglement of a spin labeled by index l reads

El =
1
2
− 1

2
|cosnl φ |, (4.11)

where φ = 2Jt/h̄, nl is the degree of vertex which represents spin l in the graph. In the case of
state |ψG(φ ,α,θ)⟩ the entanglement of qubit q[l] with other qubits is given by

El =
1
2
− 1

2

√
sin2

θ

(
cos2 φ

2
+ sin2 φ

2
cos2 θ

)nl

+ cos2 θ , (4.12)

where nl is the degree of vertex which represents qubit q[l]. The geometric measure of entangle-
ment of the graph states is calculated on IBM’s quantum computers [7,8]. The results of quantum
calculations are in good agreement with the theoretical ones.
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Quantal and semiclassical study of the elastic scattering
and charge transfer in cold H+H+ collisions
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The study of the elementary processes occurring at proton impact on atomic hydrogen is important
for many applications such as astrophysical and fusion plasma. In the present study, we compute
the cross sections of the elastic scattering (EL)

H(1s)+H+ → H(1s)+H+ (5.1)

and the resonant charge transfer (CT)

H(1s)+H+ → H++H(1s), (5.2)

at proton collision with atomic hydrogen for the energy range of 10−10 ≤ Ec.m. ≤ 10 eV. Here Ec.m.

is the collision energy in the center-of-mass frame. Reactions (5.1) and (5.2) have been the subject
of active study for many decades [1-4].

For the energy range considered here, only the two lowest electronic states of H2
+, the 1sσg gerade

(g) and 2pσu ungerade (u), are involved. Thus, the cross sections for reactions (5.1) and (5.2) may
be obtained from solutions of uncoupled single-channel Schrödinger equations of the form(

d2

dR2 + k2 −2µV (l)
g,u(R)

)
ψ

(l)
g,u(R) = 0, (5.3)

where k2 = 2µEc.m., µ is the system reduced mass, l is the orbital angular momentum of the
collision system, V (l)

g,u(R) is the adiabatic potential for either the 1sσg or 2pσu state, and ψ
(l)
g,u(R)

is the radial wave function for the corresponding reaction channel. The adiabatic potential V (l)
g,u(R)

reads

V (l)
g,u(R) = EBO

g,u (R)+
l(l +1)
2µR2 , (5.4)

where EBO
g,u (R) is the Born-Oppenheimer energy of the corresponding reaction channel. We com-

pute the EBO
g,u (R) energy as the solution to the two-Coulomb-center problem eZ1Z2 by the method

of the continued fractions.

The integral cross sections are determined from the scattering phase shifts. Due to the quantum
indistinguishability of identical particles (as in the present case), the two different sets of elas-
tic scattering cross sections, ELi (for indistinguishable) and ELd (for distinguishable) particles
approach are produced. Both the fully quantal and the semiclassical (JWKB) approaches were uti-
lized in the present calculations. Our computed cross sections (in a.u., a2

0 = 2.8003× 10−17cm2)
are compared with the results of other authors and presented in Tab. 1 and Fig. 1.
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Table 5.1: The integral cross section (in a2
0) for charge transfer. The present fully quantal and

JWKB calculations.
Ec.m. (eV) Present, Present,

quantal JWKB
0.1254 205.247 195.32
0.3 184.318 187.99
0.5100 166.518 165.99
1.0 162.251 162.16

Figure 5.1: (left panel) Elastic distinguishable (ELd) and elastic indistinguishable (ELi) integral
cross sections for center-of-mass collision energies within the range of 0.01–10 eV. Solid lines, the
present quantal calculations; − −, the quantal calculations of Schultz et al. [1]; −·−, the quantal
calculations of [2];

a
, the JWKB calculations of [3]; (right panel) Integral elastic cross sections

for the energy range of 10−10–10−4 eV. Lines, the present calculations of σ
(d)
EL and σ

(i)
EL; ⃝, the

σ
(i)
EL calculations of [4].
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Light-responsive polymers show great promise in various applications, such as reconfigurable pho-
tonic elements and optical-to-mechanical energy conversion. Azobenzene chromophores are pop-
ular for their reversible conformational changes (trans-cis-trans photoisomerization) absorption of
UV or visible light. An intriguing aspect of light-responsive polymers is their capacity to exhibit
anisotropic behavior under polarized light irradiation. Thus, during azobenzene’s trans-cis-trans
isomerization within the polymer, the orientation of the units shifts, becoming perpendicular to the
incident light polarization. This induces a conformational change in the macromolecules, result-
ing in photoinduced alignment of the azobenzene fragments. As a consequence, the polymer film
exhibits birefringence upon illumination. This phenomenon is particularly relevant for the design
of polarization holographic gratings and the efficient control of photoalignment. In this context,
polymers with azobenzene side chains are widely used, while polymers with azobenzene moieties
in the backbone face problems due to limited solubility, mechanical properties and film forming
ability. Overcoming these challenges is essential to unlock the full potential of light-responsive
polymers with azobenzene functionalization in the main chain.

In this study, we synthesized and characterized a polymer that combines azobenzene and octaflu-
orobiphenylene (OFB) units alongside with meta-linked fragments in the backbone. The resulting
polymer is azo-containing fluorinated poly(arylene ether) (Azo-FPAE). The incorporation of OFB
units improves solubility (due to the lipophilicity of fluorine atoms), enhances chemical and ther-
mal stability, and influences molecular packing due to the nonplanarity of OFB’s aromatic rings.
Furthermore, according to the literature, the incorporation of fluorinated units is known to improve
the optical and electro-optical properties of the polymer, leading to a lower refractive index, re-
duced optical losses, and enhanced hyperpolarization. We also incorporated meta-phenoxy units
based on our previous research, which demonstrated improved solubility, thermostability, and me-
chanical properties in such meta-connected polymers.

The Azo-FPAE was synthesized by the aromatic nucleophilic substitution reaction from decaflu-
orobiphenyl 1 (DFB) and hydroxyl-substituted azo-based monomer 2 (4,4’-{(2,2’,3,3’, 5,5’,6,6’-
octafluorobiphenyl-4,4’-diyl)bis[oxy-3,1-phenylenediazene-2,1-diyl]}diphenol) in dimethylaceta-
mide (DMAc) in the presence of excess potassium carbonate as a base.
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We introduced an azo group into the structure of polymer through the OH-based component,
namely V-type monomer 2 (conjugation system D-π-A-π-D), in which the electron acceptor com-
ponent (A) is situated between the two donor (D) units. Remarkably, monomer 2 can be regarded as
an a-b-a trimer, comprising a DFB residue (b) and a para/meta-substituted azo-diphenol residue (a).
Consequently, the polymer structure can be simplified as the result of the interaction between DFB
(b in a-b-a trimer) and 3-((4-hydroxyphenyl)diazenyl)phenol (a in a-b-a trimer). Nevertheless,
in our perspective, monomer 2 was obtained more easily through a straightforward diazotization
reaction of the corresponding fluorinated meta-linked aromatic diamine followed by azo coupling
with phenol.

The Azo-FPAE polymer, obtained as an orange fibrous solid, exhibited complete solubility in
chloroform and DMAc, while it was insoluble in alcohols. This solubility behavior allows for
the casting of the copolymer from solution, yielding high-quality self-supporting films that are
mechanically strong and easy to handle. The success of the synthesis of the Azo-coFPAE was
confirmed with 1H NMR, 19F NMR, FTIR and Raman spectroscopy techniques. The electronic
absorption spectrum of the prepared azobenzene-modified polymer in DMAc solution exhibit two
characteristic absorption bands. The high intensity band at around 336 nm is related to π-π∗
transition of the trans form of the azobenzene moiety. The weak band at ∼440 nm originates from
typical n-π∗ transition.

Thermal properties of the resulting Azo-FPAE were investigated by differential scanning calori-
metry (DSC) and thermal gravimetric analysis (TGA). Owing to the high content of fluorinated
units, the polymer had good thermal stability and exhibited a one-step pattern of decomposition. It
demonstrated a temperature of 405◦C at 5% weight loss (T5%), indicating its suitability for various
applications. DSC measurements revealed the amorphous nature of the copolymer because no
melting endotherm peak was found from the first and second heating DSC scans. Note, two glass
transition temperatures (Tg) are revealed for Azo-FPAE: Tg1 is about 151 oC and Tg2 is about 184
oC. This indicates that the polymer structure consists of two different amorphous regions.

Generally, various interactions can occur within the polymer, including H- and J-aggregation of
azobenzene fragments, πAr-πArF (fluorine) stacking interactions between non-fluorinated aromatic
units and perfluoroaromatic fragments, and other weak interactions. The nonplanarity of the OFB
fragment rings is caused by the covalent bonds between perfluorinated phenylene fragments, which
leads to the contortion of polymer chains. All these factors influence the packing of polymer
chains and the available free volume within the polymer, which are crucial for processes such as
photoisomerization and photoorientation.

To address these questions and gain further insights into the chain conformations and interactions,
we first develop a coarse-grained computational model aimed at preserving the relevant geometry
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of the Azo-FPAE monomer for use in molecular dynamics simulations. Specifically, our model di-
rectly incorporates the shape of each subunit of the monomer as opposed to conventional spherical-
bead approximations. This approach enables us to preserve the relevant stacking of the aromatic
units using a minimal model that can capture hierarchical, mesoscale organization – particularly
relevant for subsequent property characterization. As such, results from both theoretical and ex-
perimental studies combine to provide comprehensive understanding of the azo-based system.

This work was supported by NASU project 0123U100832, NATO SPS project G6030 and Kent
State University’s Ukraine Scholars Fund.Yu. K. cordially thanks the Johns Hopkins - Universities
for Ukraine Fellowship program for support. K.A. and T.V. acknowledge the ORAU Ralph E.
Powe Junior Faculty Enhancement Award for funding support of this project.
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Quantum Anomalies have Classical Origin
Robert R. Lompay
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Quantum anomalies (ie, the violation of the conservative nature of the classical Noether currents by
quantum radiative corrections, for a review see [1]) are one of the most intriguing and mysterious
phenomena of quantum field theory. It is commonly believed that they have a purely quantum
origin (they are an artifact of the renormalization procedure) and therefore, they in principle cannot
be derived within the framework of the classical theory. The purpose of the current research is to
demonstrate that the anomalies can arise naturally in the classical theory of spatially bounded
field systems. Exploring as an example the classical electrodynamics of massless fermions in the
space-time domain Ω of a finite size, we show that the famous Adler-Bell-Jackiw (ABJ) anomaly
∂ν jν

5vac = cFµν
∗Fµν is a simple consequence of the requirements of the spatial boundedness of

the field system under consideration (ie non-spreading of the fields beyond the region Ω) and the
gauge invariance. The main stages of our research are as follows.

We consider first the theory of the free massless Dirac field ψ in the region Ω (∂Ω = Σ1∪Σ2∪B12
, where Σ1, Σ2 are spacelike, and B12 is timelike). We require that during the evolution the field
must remain localized in Ω, and the Dirac equation is fulfilled everywhere in Ω = Ω∪B12 (that
is, both in the bulk Ω, and on its boundary B12). These requirements can be satisfied only if we
introduce a surface (i.e localized on B12) fermion source ζ . It is shown that the including of its
in the Lagrangian makes the variational problem well-posed, and the variational principle allows
us to obtain the Dirac equation iγµ∂µψ = 0 (the equation of motion in the bulk Ω), as well as the
junction conditions ψ|B12 = µζ (the equation of motion on the boundary B12). The last relation
will be chirally invariant if ζ has the same transformation properties as ψ .

We consider then the electromagnetic field Fµν interacting with an external electric current jν .
The requirements of the localization of the field in Ω (both its electric E⃗ and magnetic H⃗ com-
ponents) and fulfillment of the Maxwell equations in Ω forces us to introduce surface electric
iν and magnetic ′iν currents. It is shown that they can be combined into a unique tensor iµν

(iν = i⊥ν , ′iν = ∗i⊥ν ), so the surface sources are of the dipole type (here ⊥ means the component
orthogonal to B12, and ∗ is the Hodge star). The standard Maxwell action functional allows us to
derive junction conditions for F⊥ν components only. We overcome this difficulty by constructing
a complex action functional whose imaginary part is the Chern-Simons form. It is shown that the
inclusion of the surface currents iµν leads to a well-posed variational problem and allows us to
obtain both, the Maxwell equation ∂µFµν =− jν and the juction conditions Fµν |B12 = iµν for all
components of the electromagnetic field. The resulting theory can be formulated in terms of the
self-dual field Fµν

− = Fµν − i∗Fµν (the Riemann-Silberstein vector ε⃗ = E⃗ + iH⃗) and the self-dual
sources iµν

− = iµν − i∗iµν . The analysis of the canonical structure of the theory shows that, unlike
the case of an electromagnetic field in the infinite space, in our case the components of the vector
ε⃗ are kinematically independent (ie they commute). Alternatively, but equivalently, the theory can
be formulated in terms of antiself-dual quantities Fµν

+ , iµν

+ . It should be noted that the Riemann-
Silberstein vector ε⃗ plays an important role in modern studies of optical helicity (see, for example,
[2] and references therein).
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Finally, we consider the full dynamical theory of interacting the massless electron-positron and
the electromagnetic fields localized in Ω. The fermionic surface source ζ is a charged field,
and therefore it must contribute to the surface currents iµν . The interaction of ψ and ζ with
the electromagnetic field (with the potential Aµ ) is fixed by the requirement of the gauge invari-
ance of the theory in Ω. The analysis of the dynamical conservation of the total electric cur-
rent Jν (which includes both bulk jν and surface iν currents) leads to the identification iµν =
eµζ Sµνζ = eµζ LSµνζR + eµζ RSµνζL = iµν

+ + iµν

− and to the junction conditions Fµν

± |B12 = iµν

±
(here Sµν is the spin matrix, and ζR and ζL are the right and left spinors, respectively). Un-
like the bulk current vector jν = eψγνψ = eψRγνψR + eψLγνψL = jν

R + jν
L , each of iµν

± con-
tains fields of opposite chirality and therefore the are not invariant under chiral transformations
(γ5-rotations). When ψ → exp(iαγ5)ψ , then iµν

± → exp(±i2α)iµν

± . Therefore, in order to en-
sure the fulfillment of the junction conditions (the field equations on B12!), every γ5-rotations
of fermions must be accompanied by dual rotations (∗-rotations) of the electromagnetic field
Fµν

± → exp(2α∗)Fµν

± = exp(±i2α)Fµν

± . We show that for such extended (γ5- plus ∗-) chiral
rotations, the corresponding current Jν

5 is nothing but the total helicity current (the sum of the
helicity currents of the electron-positron Jν

5EP and the electromagnetic Jν
5EM fields), and that its

conservation reproduces the chiral anomaly of ABJ, ∂νJν
5 = ∂νJν

5EP − cFµν
∗Fµν = 0.

The validity of the proposed classical mechanism of the generation of the chiral anomaly can
be verified experimentally. The predictable effect will consist in the helicity flip of a circularly
polarized electron beam moving along an optical circular waveguide in which an electromagnetic
field of the suitable configuration is excited (an optical instanton). The theoretical calculation of
such a field, as well as a multiplicity of various other processes having place in such a system, can
be performed by the methods of the Penrose twistor theory [3].

Some features, in particular symmetry properties, of the electrodynamics with dipole-type currents
are also discussed. Based on them, a possible theoretical explanation of the problem (of non-
existence) of the electric dipole moment of the electron is proposed.

The current investigation is a part of a broader research program of the investigation of the classical
and quantum kinematics and dynamics of spatially bounded field systems. Some directions of
further investigations and their perspectives are outlined.

References
1. Morozov, A., Anomalies in gauge theories, Soviet Physics - Uspekhi 29, 993-1039 (1986).

https://doi.org/10.1070/PU1986v029n11ABEH003537.

2. Bliokh, K., Bekshaev, A., Nori, F., Dual electromagnetism: helicity, spin, momentum and angular momentum, New Journal of Physics 15,
033026 [28 pages] (2013). https://doi.org/10.1088/1367-2630/15/3/033026.

3. Penrose, R., MacCallum M., Twistor theory: an approach to the quantisation of fields and space-time, Physics Reports 6, 241-316 (1972).
https://doi.org/10.1016/0370-1573(73)90008-2.



US-Ukraine Quantum Forum 2023 Conference Proceedings — 27

Variational optimization of iPEPS with CTMRG
on the original lattice

Illya Lukin1,2

1Karazin Kharkiv National University, Svobody Square 4, 61022 Kharkiv, Ukraine
2Akhiezer Institute for Theoretical Physics, NSC KIPT, Akademichna 1, 61108 Kharkiv, Ukraine

Tensor networks provide an effective framework to study many-body problems in strongly-correlated
systems, since they can capture the structure of entanglement of the ground state wave function
[1]. For two-dimensional quantum systems infinite projected entangled pair states (iPEPS) have
proven themselves as an efficient wave-function ansatz capable of representing both symmetry-
broken phases and topological orders [2-4]. To represent the entanglement structure of the ground
state the PEPS tensor network usually mimics the lattice on which the original model is defined.
There are several ways to calculate observables with PEPS tensor network: the corner transfer
matrix renormalization group (CTMRG) [5], the boundary matrix product states [6], the tensor
renormalization group [7] with CTMRG scheme being the most widely employed. Unfortunately,
the CTMRG is usually applied in a straightforward manner only on the square lattice geometry.
This initiated the development of various methods to map the original lattice into the square lat-
tice, with the mapping process usually not respecting the original lattice symmetries and possibly
enlarging the necessary unit cell [8-11].

We report on a successful application of the generalization of the CTMRG approach to the honey-
comb lattice geometry [12,13] with the calculation of relevant physical observables and optimiza-
tion of the iPEPS wave function directly on the honeycomb lattice. The optimization is realized by
means of variational optimization, where gradients are obtained from the automatic differentiation
through the CTMRG algorithm. We benchmark our method on both the antiferromagnetic Heisen-
berg and Kitaev models and obtain the state-of-the-art accuracy of the corresponding results. In
particular, the obtained iPEPS are able to capture both symmetry-broken gapless magnetic and the
gapless Kitaev spin-liquid states.

We also generalize the theoretical approach to other lattice geometries. For this aim, we have
developed the generalization of the CTMRG algorithm to other Archimedean lattices: triangu-
lar, kagome, square-octagon, star, ruby, and square-hexagon-dodecahedron. We also report on
CTMRG for some non-Archimedean lattices, in particular, the dice lattice. The proposed CTMRG
algorithm derivation scheme may also be generalized to even more exotic lattice geometries,
like Shastry-Sutherland lattice, maple-leaf, or square-kagome lattices. We have tested the pro-
posed CTMRG methods on the problems of classical statistical mechanics, like the classical two-
dimensional Ising models, which can be also formulated in terms of tensor networks. Our results
for these classical models are in excellent agreement with the previous numerical and analytical
results. Another possible generalization concerns the application of the proposed CTMRG meth-
ods to larger unit cells or to problems, which partly break lattice rotational symmetries. In this
direction, we were able to generalize the honeycomb CTMRG to two-site unit cells.

The proposed methods open the way to numerous future applications and generalizations. In par-
ticular, some of the CTMRG schemes can be naturally used for the optimization of iPEPS with
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long-range interactions (up to the 5-th neighbor). This may allow the simulation of systems with
fine-tuned flat bands, which are predicted to host various exotic topological orders. Another possi-
ble application concerns the calculation of excited states. Even more exotic applications may exist:
the CTMRG may be generalized to non-flat lattices, in particular, hyperbolic lattices, which were
recently experimentally realized in circuit quantum electrodynamics experiments and which may
exhibit completely new phases.
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Quantum channels in free space attract great attention from the perspective of their practical ap-
plications in many important communication scenarios. For example, they are applied to establish
secure communication through hard-to-reach regions, communication with and between moving
objects, global satellite-mediated communication, etc. Beyond the task of quantum key distri-
bution, these channels could be used for quantum digital signature, connecting quantum devices
with quantum teleportation or entanglement swapping protocols, etc. Atmospheric turbulence is
a leading disturbance factor for such channels. Therefore, an accurate theoretical description of
its impact on the quantum states of a light mode is important for both fundamental and applied
research in quantum optics and quantum communication.

We consider a group of protocols that do not involve the spatial structure of light modes. In this
case, the input state at the transmitter is related to the output state at the receiver via the input-
output relation,

Pout (α) =

1∫
0

dη
1
η

Pin

(
α
√

η

)
P(η), (9.1)

see Ref. [1]. Here Pin(α) and Pout(α) are the Glauber-Sudarshan P-functions characterizing the
quantum states of a light mode at the transmitter and receiver, respectively. The quantity η ∈ [0,1]
describes the channel transmittance, while the function P(η) is the probability distribution of
transmittance (PDT). The latter represents the main characteristic of atmospheric quantum chan-
nels. The PDT depends on the beam parameters at the transmitter, the channel length, the turbu-
lence parameters, and the receiver characteristics.

Several analytical models for the PDT have been proposed in literature. One of them is focused
on the impact of beam wandering [2]. The elliptic-beam model [3] also incorporates beam-spot
distortions, which are approximated by Gaussian elliptic beams with randomly oriented semi-axes.
The truncated log-normal distribution, discussed in Ref. [4], is applicable in cases where the beam-
spot distortion plays a critical role. Furthermore, under the assumption of statistical independence
between beam wandering and beam-spot distortion, the PDT can be derived using the law of total
probability, as outlined in Ref. [5].

The direct application of analytical models is faced with the problem of properly determining the
domain of their applicability. Typically, it is considered to depend on the strength of the turbulence.
In this contribution, for details see Ref. [6], we report on numerical simulations of atmospheric
quantum channels and use the results for validation of analytical models. This enables, among
other applications, to conclude on the range of their applicability.
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The random component of the channel transmittance is caused by fluctuations in the index of
refraction due to atmospheric turbulence. This, in turn, leads to random fluctuations in the shape
of the beam and its fraction passing through the receiver aperture. Considering a classical field
with amplitude u(r;z), the channel transmittance is defined as

η =
∫
A

d2r|u(r;z)|2, (9.2)

where A is the amplitude opening. Thus, to sample the channel transmittance η , it is necessary to
first sample the field amplitude u(r;z) at the aperture plane. We have performed this task with the
sparse-spectrum model [7] for the phase-screen method [8].

We have also introduced an empirical model of the PDT based on the beta distribution. This
distribution can be parameterized by the moments ⟨η⟩ and ⟨η2⟩, which can be calculated from
the classical theory of optical radiation in the turbulent atmosphere. For a wide range of channel
parameters, the beta distribution model provides better agreement with numerical simulations than
other analytical models.

Having implemented this method, we studied the three channels with different turbulence impact:
weak, moderate and strong. We compared all the mentioned models with simulated PDTs. Our
results have shown that the applicability of the analytical models depends mainly on the radius of
the receiver aperture and only slightly on the turbulence strength. Our numerical results are applied
to study the transmission of non-classical properties of quantum light through free-space channels.

The authors acknowledge National Research Foundation of Ukraine for supporting this work
through the project Nr. 2020.02/0111 “Nonclassical and hybrid correlation of quantum systems
under realistic conditions”.
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A superconducting qubit in a semi-infinite transmission line is an important object in waveguide
quantum electrodynamics. The investigation of the considered system could be used for study-
ing many interesting phenomena in this branch of physics such as dynamics in atom-like mirrors,
collective Lamb shift, the dynamical Casimir effect, cross-Kerr effect and many others. In our
research the qubit is driven periodically (by two signals: probe and pump), what allows to study
Landau-Zener-Stuckelberg-Majorana (LZSM) interference [1, 2]. The LZSM interferometry is a
fascinating effect which serves for studying fundamental physics and for characterizing and con-
troling of quantum systems. Circuits with superconducting qubits in front of a mirror serve as a
good platform to study the dynamics of LZSM interference since they provide the strong coupling
between propagating fields and qubits and easy in their fabrication.

In this work we expand the results obtained in Ref. [3], where one can find the detailed description
of the experiment. Here we will be focused on the theoretical aspects of the research. The probe
(with probe frequency ωp and probe power Pp) and pump (with pump frequency ωpump and pump
power Ppump) signals are applied to the transmission line and the on-chip flux line (which modulates
the transition frequency of the qubit), respectively. Then the reflection coefficient from the mirror
(capacitance) r is measured. Both frequency and power for the pump tone and probe tone are all
tunable.

In Ref. [4], the authors associated the reflection coefficient r with the theoretically calculated prob-
ability of an upper level occupation P1 (increasing P1 corresponds to decreasing r). Here the
same correspondence between theory and experiment is used. The system can be described by the
Hamiltonian (detailed derivation can be seen in Ref. [4]):

H1 =−
h̄(ωp −ω10)+δ sinωpumpt

2
σz +

h̄G
2

σx. (10.1)

Here δ is the amplitude of the energy-level modulation (corresponds to Ppump in the experiment),
G characterizes the coupling to the probe signal (corresponds to Pp in the experiment), ω10 is a
qubit frequency. In order to describe the qubit dynamics, we use the Lindblad equation, which in
the diabatic basis with the Hamiltonian (10.1) has the form:

dρ

dt
=− i

h̄

[
Ĥ1,ρ

]
+∑

α

L̆α [ρ] , (10.2)

where ρ =

(
ρ00 ρ01
ρ∗

01 1−ρ00

)
is the density matrix, such that P1 = 1−ρ00. The Lindblad superoper-

ator L̆α characterizes the system relaxation caused by interactions with the environment,

L̆α [ρ] = LαρL+
α − 1

2
{

L+
α Lα ,ρ

}
, (10.3)
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(c) (b) (a) 

Figure 10.1: Dynamics of the transmon qubit: the upper-level occupation probability P1 as a
function of the probe frequency ωp and time t, using the probe amplitude G = 2π × 1.4 MHz
and the pump amplitude δ = 10 MHz. The qubit is irradiated by a pump with frequency
(a) ωpump/2π = 1 MHz, (b) ωpump/2π = 2 MHz, (c) ωpump/2π = 3 MHz.

where {a,b}= ab+ba is the anticommutator. For a qubit there are two possible relaxation chan-
nels: energy relaxation (described by Lrelax) and dephasing (described by Lφ ). The corresponding
operators can be expressed in the following form:

Lrelax =
√

Γ1σ
+, Lφ =

√
Γφ

2
σz (10.4)

with σ+ =

(
0 1
0 0

)
, σz =

(
1 0
0 −1

)
, Γ1 being the qubit relaxation, Γ2 = Γ1/2+Γφ is the deco-

herence rate, Γφ is the pure dephasing rate.

Solving of Eq. (10.2) gives dependence of P1 on time t, pump frequency ωpump, pump signal ampli-
tude δ , probe frequency ωp, probe signal amplitude G. The dependence obtained allows us to build,
for instance, P1 = P1(ωp, t). Fig. 10.1 shows such a function for cases (a) ωpump/2π = 1 MHz,
(b) ωpump/2π = 2 MHz, (c) ωpump/2π = 3 MHz. Such dependencies were not studied ex-
perimentally, therefore all results are obtained theoretically. A good agreement between theory
and experiment in Ref. [3] allows us to carry out such and any similar functions. The obtained
dependencies may be interesting and useful for setting up future experiments.

Analyzing obtained dependencies one can conclude that, for the case ωpump/2π = 1 MHz, the
resonance peaks are not distinguished, this may be due to the fact that they are located too close
to each other and therefore merge. For Fig. 10.1(b), strong peaks are observed only at a distance
ω/2π = 8 MHz from the line ωp/2π = 5 GHz, for the case (c) strong peaks are observed only
at distances ω/2π = 6 MHz, 9 MHz from the line ωp/2π = 5 GHz, while peaks at a distance
of ω/2π = 3 MHz are weakly pronounced.

Also we can compute the dependencies for P1 in a stationary regime by making the time averaging
of the results (the procedure of averaging is described in Ref. [3]). Figure 10.2 shows a time-
averaged interferogram, where P1 is a function of ωpump and ωp. We see that with increasing of
pump amplitude δ the number of peaks is increasing as well. It is seen that the larger the pump
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Figure 10.2: LZSM interferograms: the dependence of upper-level occupation probability P1 on
ωpump and ωp at fixed pump amplitude δ for a weak probe G = 2π × 0.7 MHz. Panel (a) corre-
sponds to the pump signal amplitude value δ = 10 MHz, for panel (b) the pump signal amplitude
value is δ = 20 MHz.

amplitude δ the larger the amplitude along the ωp-axis. One can observe similar dependencies in
Ref. [4], where only stationary regime was considered.

To summarize, we considered the dynamics and stationary regime of a capacitively shunted transmon-
type qubit in front of a mirror, affected by two signals: probe and dressing (pump) signals. The
presented dependencies were obtained theoretically, but a good correspondence of developed the-
ory with the experiment in Ref. [3] allows us to assert the correctness of presented results. The
obtained dependencies may be interesting and useful for setting up future experiments.

M.P.L. was partially supported by the grant from the National Academy of Sciences of Ukraine for
research works of young scientists.
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Separable or Entangled? – How to deduce these quantum
ensemble properties from density matrix elements

Gleb Skorobagatko

Institute for Condensed Matter Physics of National Academy of Sciences of Ukraine,
Svientsitskii Str. 1, 79011 Lviv, Ukraine

How can one deduce by using only the information about present quantum state of arbitrary open
quantum system whether any act of entanglement took place between its counterparts in the sys-
tem’s “history”? - This fundamental question has been debated for more than twenty years in the
framework of a modern quantum science [1]. Thus, in order to control the degree of entangle-
ment and/or the effect of interactions between the subsystems of a given quantum system during
its time evolution, it is necessary to find proper qualitative measures of the entanglement (or vice
versa, separability), which would be encoded in the matrix elements of a given quantum density
matrix describing the entire quantum system at arbitrarily chosen moment of time [1–3, 5–9]. As
the result, a number of different entanglement (or separability) criteria [1–3, 8–15] has been devel-
oped for finite-dimensional quantum density matrices describing composite open quantum systems
which are defined in finite-dimensional Hilbert spaces (for the review on different entanglement
measures one can see, e.g., Ref. [1]). The search of the most universal and physically transparent
forms of separability tests for arbitrary density matrices represents one of the most fundamental
challenging problems in the quantum entanglement theory. Besides its fundamental importance
the successful solution of this problem can open new perspectives in a wide range of important
applications in the area of quantum computation and quantum algorithms optimizations [16-19].

The first important step in such a solution was made in the end of twenty century (in 1996) inde-
pendently by A. Peres [2] and Horodecki family [3]. This was known in the literature as “Peres-
Horodecki (or PPT- positive partial transpose) separability criterion” [1-3]. However, the applica-
bility of the most famous PPT-criterion of separability is restricted by two-qubits density matrices
only [2,3] while its general physical background has not been clarified until the appearance of the
paper [4]. Especially, the general solution of this common separability problem has been proposed
by the author in Ref. [4] where the general physical background behind the Peres–Horodecki
positive partial transpose (PPT-) separability criterion has been revealed [4] for the first time. Es-
pecially, a general physical sense of partial transpose operation is shown [4] to be equivalent to
what one can call as the “local causality reversal” (LCR-) procedure for all separable quantum
systems, or to the demonstration of a global time arrow direction uncertainty in all entangled cases.

The central idea of a novel approach being proposed by the author in Ref. [4] is to circumvent the
problem of the ambiguity in the entanglement witnesses construction by analysing instead another
general properties which distinguish between separable and entangled quantum states of arbitrary
multi-partite quantum system in the most general case. The latter properties are encoded in differ-
ent causal relations for the ignorance- (meaning the ignorance about the true quantum state of the
system) and in virtual quantum transition probabilities for all separable and all entangled cases,
correspondingly. These causal relations are shown to be intimately connected with general sym-
metry of arbitrary separable and arbitrary entangled quantum states with respect to the operation
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of local causality reversal (for all possible separable states) or with respect to the uncertainty in a
global time arrow direction (for all possible entangled states).

In the simplest 2⊗2 case it is easy to show [2,3] that ppt-separability criterion is equivalent to the
requirement of the non-negativity for both following determinants

W1 = ρ
T1
11|11ρ

T1
22|22 −ρ

T1
11|22ρ

T1
22|11, W2 = ρ

T1
12|12ρ

T1
21|21 −ρ

T1
12|21ρ

T1
21|12, (11.1)

constructed from the matrix elements of a given pt-transformed 2⊗ 2 density matrix ρ̂T1 of arbi-
trary bipartite quantum system, where each among its two subsystems “lives” in the 2-dimensional
Hilbert subspace (here µ,ν ,n,m = 1,2). If both W1,2 are non-negative then corresponded density
matrix describes separable bipartite quantum system, whereas if either W1 or W2 is negative then
corresponding bipartite quantum system is entangled (see Refs. [2,3]) .

In the basic author’s paper [4] it has been demonstrated for the first time that the ppt criterion
for 2⊗ 2 density matrices exploiting Eqs. (11.1) contains hints to a more global law of nature
which aims to connect a new universal separability criterion for arbitrary density matrices with
very general causal and probabilistic considerations. This brand new causal probabilistic law –
universal causal separability criterion (UCSC) – has been revealed for the first time in Ref. [4].

The respective two universal causal probabilistic relations connect probabilities of observer’s ig-
norance about j-th configuration of states for arbitrary composite system P( j)

∅ and P( j)
−∅ – when the

global time arrow is reversed – with the probability P( j)
⟳ of a virtual quantum transition for j-th

configuration of composite quantum system’s base states and with the probability P( j)
⟲ of the same

kind of virtual quantum transition for the j-th configuration of the system while the local causality
reversal procedure is implemented to any among subsystems of a given composite quantum sys-
tem [4]. From Eqs. (11.1) one can deduce that these two fundamental causal probabilistic relations
should have different forms for arbitrary separable and arbitrary entangled states of any composite
quantum system [4]. Especially, in all separable cases of any kind one should have [4]

P( j)
∅ = P( j)

⟳ +P( j)
⟲ . (11.2)

At the same time, in all entangled situations one should have [4]

P( j)
⟳ = P( j)

∅ +P( j)
−∅. (11.3)

One can also see these symmetries and related causal considerations on Fig. 11.1 for both separable
(left picture) and entangled (right picture) cases.

Physically, Eqs. (11.2) and (11.3) reflect two different causal symmetries: i) the probability of
observer’s ignorance about the quantum state of separable constituent subsystems of quantum
system during its preparation is invariant with respect to the local causality reversal (LCR-) pro-
cedure performed on any separable subsystem of a given quantum system for Eq. (11.2) and ii)
the probability of a virtual quantum transition between two completely orthogonal compositions
of base states of the entangled quantum system – remains invariant with respect to a reversal of a
global time arrow for Eq. (11.3) correspondingly (see Ref. [4]).
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Figure 11.1: Left: Schematic picture of the evolution of density matrix defined in D⊗N Hilbert
space (encoding N quantum subsystems of D eigenstates each) in the separable case with respect
to the local causality reversal (LCR-) procedure performed on m among N its subsystems (m =
1,2, . . .N −1). Right: Schematic picture of the evolution of density matrix defined in D⊗N Hilbert
space (encoding N quantum subsystems of D eigenstates each) in the entangled case with respect
to two possible directions of a global time arrow and pt-transformation performed on m among N
its constituent subsystems (m = 1,2, . . .N −1).

Now in order to complete the definition of a brand new universal causal separability criterion
(UCSC) one needs to specify all terms from Eqs. (11.2) and (11.3) for the most general situation
of density matrix of arbitrary dimensionality encoding arbitrary ensemble of N ≥ 2 similar (either
interacting or not with each other) quantum subsystems of the dimensionality D ≥ 2 of each sub-
system’s Hilbert subspace [4]. Thus, the dimensionality of the entire density matrix Hilbert space
should be DN ≥ 4 (or less for the cases of strongly interacting quantum ensembles). Remarkably,
the resulting universal separability criterion (UCSC) should give correct predictions for both finite
and infinite integer numbers D and N.

To complete this program it is quite natural [4] to define an arbitrary base state vector of the entire
D⊗N quantum system as its ( j-th) configuration

|{kN}( j)⟩=
N

∏
n=1

⊗|k( j)
n ⟩ (11.4)

with k,k′ = 1, ..,D; j = 1, ..,K(D)
N .

Then one can introduce a completely orthogonal configuration of the state vectors of subsystems
with respect to its arbitrarily chosen j-th configuration as the base vector of state of the entire sys-
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tem being completely orthogonal to a vector of state for chosen j-th system configuration |{kN}( j)⟩.
This yields

|{k̄N}(l)⟩=
N

∏
n=1

⊗|k′(l)n ⟩(k ̸=k′),( j ̸=l). (11.5)

For the total number of all distinct configurations one has [4]

K(D)
N =

 1[
1

DN +
(
1− 1

D

)N
]


in

(11.6)

here the symbol {. . .}in means integer part of the number. Therefore, in the basis of orthonormal
state vectors of Eq.(5) (or equally, in the basis of all system’s configurations) arbitrary density
matrix ρ̂

(D)
N defined in the D⊗N Hilbert space takes following form [4]

ρ̂
(D)
N =

DN

∑
j, j′=1

|{kN}( j)⟩ρ{k} j|{k} j′
⟨{kN}( j′)|, (11.7)

where each among summation indices j, j′ runs all DN possible configurations of the entire quan-
tum system [4].

Using Eqs. (11.2)–(11.7), one can deduce for the “ignorance probability” P( j)
∅ , which reflects the

uncertainty in observer’s knowledge about the realization of either {kN}( j) configuration or one
among its completely orthogonal {k̃N}( j) counterparts in given arbitrary N-partite quantum system
from D⊗N Hilbert space a following formula

P( j)
∅ = ρ{k} j|{k} j

(
No.c.

∑
l=1

ρ{k̄}l |{k̄}l

)
, (11.8)

where No.c. is the number of completely orthogonal configurations {k̄N}(l) for given configuration
{kN}( j) chosen, No.c. is different in the cases of non-interacting and interacting subsystems in the
ensemble [4].

Analogously, for the probability P( j)
⟳ of a virtual quantum transition for the arbitrary distinct con-

figuration of the entire quantum system living in the D⊗N Hilbert space involving its completely
orthogonal counterparts {k} j and {k̄}l one has

P( j)
⟳(m)

=
Nv.t.

∑
l=1

ρ
Tm
{k} j|{k̄}l

ρ
Tm
{k̄}l |{k} j

, (11.9)

where the symbol ρTm means the operation of partial transposition of a density matrix ρ̂ simulta-
neously in the m ( m ≤ (N −1) ) subspaces of its Hilbert space.

Therefore, new definitions (11.8) and (11.9) for the ignorance- and virtual quantum transition
probabilities for arbitrary density matrices of the rank ≤ DN allow one to find the explicit form of
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the probabilities P( j)
⟲(m)

=W ( j)
m and P( j)

−∅(m)
=−W ( j)

m for all separable- and for entangled situations

of Eqs. (11.2) and (11.3), respectively. In both these situation one has for the quantity W ( j)
m a

following general formula (see Ref. [4])

W ( j)
m =

(
ρ{k} j|{k} j

No.c.

∑
l=1

ρ{k̄}l |{k̄}l

)
−

(
Nv.t.

∑
l=1

ρ
Tm
{k} j|{k̄}l

ρ
Tm
{k̄}l |{k} j

)
. (11.10)

In Eq. (11.10) the integer number K(D)
N is a number of all distinct (i.e. not completely orthogonal)

configurations of the ensemble of N D-dimensional quantum subsystems joined into one either
interacting (coupled) or not quantum ensemble, whereas in different (interacting or not) situations
one has for integer numbers No.c. and Nv.t. in Eq. (11.10) following different (dual) relations (see
Ref. [4]) {

No.c. = (D−1)N , N − f ree ensemble
No.c. = (D−1), N − coupled ensemble

(11.11)

and {
Nv.t. = (D−1), N − f ree ensemble

Nv.t. = (D−1)N , N − coupled ensemble
(11.12)

In Eqs. (11.11) and (11.12) the terms N − coupled (and N − f ree) mark two opposite situations
where all N quantum subsystems of the ensemble are interacting (non-interacting) with each other
at the moment of time when one measures matrix elements of a given density matrix of the ensem-
ble [4].

Hence, from Eqs. (11.8)–(11.12) for each j-th distinct configuration {k} j of N subsystems’ base
quantum states one has the following general form of the universal causal separability criterion
(UCSC) [4]

W ( j)
m =

{
P( j)
⟲(m)

, f or W ( j) ≥ 0, i f {kN}( j) is m− separable;

−P( j)
−∅(m)

, f or W ( j) < 0, i f {kN}( j) is m− entangled.
(11.13)

For arbitrary density matrix defined in D⊗N Hilbert space there exist K(D)
N separability/entangle-

ment conditions of the type (11.10)–(11.13) – one for each among K(D)
N distinct configuration

of subsystems’ eigenstates. Some of these equations may appear to be equal to each other, thus,
sufficiently reducing the total number of restrictions system should obey to be separable/entangled.

Resulting general formulas have been then analyzed in details in paper [4] for the widest specific
type of one-parametric density matrices of arbitrary dimensionality, those modelling a number N
of equivalent quantum subsystems of a dimensionality D in each subsystem’s Hilbert subspace,
being all equally connected (EC-) with each other to arbitrary degree by means of a single en-
tanglement parameter 0 ≤ p ≤ 1 (see Ref. [4]). As the result, a number of remarkable features
of the entanglement thresholds pth(D,N) for such EC-density matrices have been described for
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the first time in Ref. [4]. This includes, especially, different kinds of ”separability windows” on
the entangled backgrounds, remarkable dualities in separability/entanglement properties between
different limiting cases on the parameter p values (see Ref. [4] for details). All novel results being
obtained for the family of arbitrary EC-density matrices are shown to be applicable to a wide range
of both interacting and non-interacting (at the moment of measurement) multi-partite quantum sys-
tems, such as arrays of qubits, spin chains, ensembles of quantum oscillators, strongly correlated
quantum many-body systems, etc. (one can see Ref. [4] for further details).
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We explore the rich nature of correlations in the ground state and ordered phases of ultracold
atoms trapped in state-dependent optical lattices. In particular, we consider interacting fermionic
ytterbium or strontium atoms, realizing a two-orbital Hubbard model with two spin components,

H = ∑
⟨i j⟩

∑
γ,σ

tγ(c
†
iγσ

c jγσ +H.c.)−∑
i,γ

µγniγ +Hint,

where

Hint = ∑
i,γ

Uγγ ∑
σ<σ ′

niγσ niγσ ′ +V ∑
i,σ<σ ′,γ<γ ′

niγσ niγ ′σ ′

+(V −Vex) ∑
i,σ ,γ<γ ′

niγσ niγ ′σ +Vex ∑
i,σ<σ ′,γ<γ ′

c†
iγσ

c†
iγ ′σ ′ciγσ ′ciγ ′σ .

The indices γ,γ ′ = {g,e} and σ ,σ ′ = {↑,↓} denote the orbital states and the nuclear Zeeman spin
states, respectively. The operator c†

iγσ
(ciγσ

) creates (annihilates) an atom in the internal state |γσ⟩
at the site i and the notation ⟨i j⟩ means summation over the nearest-neighbor lattice sites only. The
local density operator of atoms in the orbital state γ is niγ = ∑σ niγσ and niγσ = c†

iγσ
ciγσ

. For a
particular orbital state γ , tγ is the hopping amplitude and µγ is the chemical potential. The sketch
of the system under study is shown in the figure below.

(b )(a )
UggUee

V V−Vex

ii−1 i+1

tg

te

x, yx

y

We perform theoretical analysis of the model with the experimentally relevant hierarchy of tun-
neling and interaction amplitudes. In particular, in one-dimensional setting we employ the exact
diagonalization and matrix product states approaches [1]. The band-structure calculations (similar
to those performed in Ref. [2]]) with the choice of parameters for the optical lattice with V (g)

x = 5Er

and V (e)
x = 10.5Er (Er is the recoil energy of an atom) result in the values of the Hubbard parame-

ters summarized in the table below.

tg(h×Hz) te Ugg Uee V Vex
173Yb 160.1 0.2591 9.238 18.13 37.031 25.646
171Yb 161.9 0.2591 0 6.157 15.005 -3.363
87Sr 277.7 0.2591 4.16 9.727 5.724 2.439
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We calculate the on-site double occupancy Dgg of g atoms, which can be viewed as the global
observable easily accessible in the experiments with ultracold multicomponent fermionic mixtures
in the lattice. In particular, this can be detected for AEAs using a photoassociation resonance on the
1S0 →3P1 intercombination line. Two atoms can form a bound pair by absorbing a photon when
the light is resonant with a bound state of the electronically excited molecule. Due to the short
lifetime of the excited molecule, it will eventually decay and the released energy will cause a loss
of the atom pair from the trap. This observable is theoretically determined as Dgg =

1
L ∑

i
⟨nig↑nig↓⟩.

We observe that Dgg can be viewed as a good indicator of the onset of nearest-neighbor magnetic
correlations in gases of 173Yb or 87Sr atoms, while for 171Yb there is no such correspondence.

We also analyze the density-wave modulation by calculating the site-averaged amplitude, ∆n =
1
L ∑i,γ |⟨niγ⟩−nγ |. This quantity can also be measured in cold-atom systems by using an additional
superlattice potential. According to our theoretical analysis, it demonstrates a different behavior
to the double occupancy. As we will see below, its enhancement can be used as an additional
indicator of the orbital correlations (171Yb and 173Yb), while its suppression can be attributed to
the onset of antiferromagnetic correlations in the Mott-insulating regimes with n = 1 or n = 2 (87Sr
and 173Yb).

Next, let us discuss features of the nearest-neighbor correlators, i.e., the spin-spin ⟨Si · Si+1⟩
and orbital-orbital ⟨T z

i T z
i+1⟩ ones. These quantities can be experimenatally measured by means

of the quantum gas microscope techniques developed for alkaline-earth(-like) atoms. The local
spin operator contains contributions from both orbital flavors, Si = Sig + Sie, where the orbital
components Siγ = (Sx

iγ ,S
y
iγ ,S

z
iγ) are expressed in terms of conventional spin-1/2 Pauli matrices as

Sr
iγ =

1
2c†

iγτ
σ r

ττ ′ciγτ ′ for r = (x,y,z). In turn, the orbital correlator is defined in terms of the operator

T z
i = 1

2 ∑τ=↑,↓ c†
iγτ

σ
z
γγ ′ciγ ′τ . The obtained dependencies of the site-averaged spin-spin correlators

⟨Si ·Si+1⟩ and ⟨Sz
i S

z
i+1⟩ on the densities of g and e atoms. One can observe that in case of 173Yb,

the correlator ⟨Sz
i S

z
i+1⟩ reveals the antiferromagnetic ordering along diagonals ng + ne = 1 and

ng+ne = 2, which is manifested by the negative value of ⟨Si ·Si+1⟩. Note that particularly in these
regions we observe a strong suppression of the double occupancy Dgg. In turn, the 87Sr system
exhibits weaker antiferromagnetic (AFM) correlations along the same diagonals as 173Yb due to
lower values of the interaction parameters, but with a similar correspondence in suppression of the
Dgg signal. Surprisingly, a gas of 171Yb atoms with the AFM on-site Hund’s coupling (Vex < 0)
does not demonstrate any AFM correlations at ng ≈ ne ≈ 1. The reason for that originates from
the different hierarchy of the interaction amplitudes and thus a different ground state in the strong-
coupling limit.

One can also notice that for both isotopes with ferromagnetic Hund’s coupling (173Yb and 87Sr with
Vex > 0) there are certain regimes with a strong FM signal in the correlator ⟨Si ·Si+1⟩. This FM
signal is almost absent in the correlator ⟨Sz

i S
z
i+1⟩ due to the constraint for finite size and zero total

polarization, N↑ = N↓. In turn, due to the AFM exchange interaction (Vex < 0) in the 171Yb system,
no ferromagnetic correlations develop, which also results into direct correspondence between the
depicted spin-spin correlators ⟨Si ·Si+1⟩ and ⟨Sz

i S
z
i+1⟩ in the whole diagram.

Therefore, the fillings ng and ne, as well as the type of atomic isotope, determine four different
magnetic orderings, that we denote AFM-1 (ng+ne ≈ 1), AFM-2 (ng+ne ≈ 2), AFM-3 (ng+ne ≈
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3) and FM. We performed additional calculations in the regions ne > 1 (not shown in figures),
which demonstrate that the spin-spin (as well as orbital-orbital) correlators are symmetric with
respect to reflections from the line (ng + ne) = 2. This fact is directly related to the particle-hole
symmetry in both orbital flavors and can be useful for verification and control purposes.

The dependencies of the orbital-orbital correlators ⟨T z
i T z

i+1⟩ on the average densities of g and e
atoms are also nontrivial. In the case of 173Yb, one can observe antiferroorbital (AFO) ordering
around ng = 1 and ne = 0.5, which is manifested by negative correlations. Remarkably, the position
and extent of this phase is in a good agreement with the previous mean-field studies of quasi-2D
lattice systems [2]. The main feature of the AFO phase is the alternating occupation of neighboring
lattice sites by atoms in different orbital states. Note that the AFO-like density modulations also
emerge in the case of a gas of strontium atoms with the corresponding maximum of the signal at
ng = 1 and ne = 0.5, but with a lower magnitude. It is worth mentioning that the sharp transition
features in the dependencies of ⟨T z

i T z
i+1⟩ for 173Yb and 171Yb at n ≈ 1, n ≈ 1.5, and n ≈ 2, as well

as in the density-related local correlators, correspond to the transitions to the insulating regimes
with the charge gap, which take place also in the thermodynamic limit.

Let us also discuss the dependence of the correlator ⟨T z
i T z

i+1⟩ for the case of 171Yb isotope. In
contrast to 173Yb and 87Sr atomic systems, one observes the strongest AFO signal at ng = ne =
1 . AFO-2 is a bipartite ordering similar to AFO-1. However, the main difference is that the
neighboring lattice sites are occupied alternately by pairs of g or e atoms. The reason for the AFO
instability (which completely suppresses the AFM correlations) in this particular regime for 171Yb
system originates from the different hierarchy of the interaction amplitudes and thus a different
ground state in the strong-coupling limit [1]. Let us also note that the AFO correlations are usually
accompanied by sizeable density modulations (the charge-density wave) on the nearest-neighbor
lattice sites.

By employing a dynamical mean-field theoretical analysis, we extend the description of systems
to quasi-two-dimensional and three-dimensional state-dependent optical lattices and study low-
temperature phases in multicomponent gases of fermionic alkaline-earth(-like) atoms [2,3]. Using
the example of 173Yb atoms, we show that a two-orbital mixture with two nuclear spin components
is a promising candidate for studies of not only magnetic but also staggered orbital ordering pecu-
liar to certain solid-state materials. We calculate and study the phase diagram of the full Hamil-
tonian with parameters similar to existing experiments and reveal an antiferro-orbital phase. This
long-range-ordered phase is inherently stable, and we analyze the change of local and global ob-
servables across the corresponding transition lines, paving the way for experimental observations.
Furthermore, we suggest a realistic extension of the system to include and probe a Jahn-Teller
source field playing one of the key roles in real crystals.
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Introduction

As Feynman mentioned in 1982, quantum systems cannot be imitated by classical computing ma-
chines [1]. The greatest interest to quantum computers appeared in 1994, after the discovery of
Shor’s factoring algorithm [2]. Since then a lot has been done in the field, and today both industry
and academic institutes are investing a lot to quantum information processing and computation.

Despite that, the origin of quantum calculation efficiency still seems to be a challenge. Both
superposition principle and linearity of unitary operators are widely believed to be responsible for
the advantage of quantum algorithms. Unfortunately, these might conflict with the Gottesmann-
Knill theorem.

Also, one may consider quantum entanglement, which has no classical analog, as another possible
solution to the problem. Indeed, it violates Bell’s inequalities and is crucial for the implementation
of various quantum information transfer protocols. However, its role can also be argued [3,4].

In this study, we analyze the problem from the perspective of propositional logic [5]. Within the
approach, any calculation can be interpreted as some logical expression ΓA which can be either
true or false, depending on whether a system possesses some property A. In terms of the classical
Boolean logic, this implies dealing with characteristic functions χλ determined on the system’s
phase space P. For example, classical conjunction ∧ (logical AND) of two statements can be
represented as

χ∧ = χA ∧χB = χAχB, (13.1)

where χA and χB are characteristic functions encoding the corresponding statements. Together
with the negation (logical NOT) and implication, this specifies the complete set of classical logic
gates for the Boolean logic.

While dealing with quantum logic, one should use the relevant projector operators PA from the
Hilbert space H instead. Each such operator projects the system’s state |ψ⟩ with the non-zeroth
norm onto the corresponding Hilbert subspace. Here, the presence of non-zeroth eigenvector of
the operator equals to the TRUE outcome of our proposition. This can be written as

PA |ψ⟩= |A⟩⟨A |ψ⟩ . (13.2)

Model description

From (13.2) one infers that PA |ψ⟩= 0 ⇔ ⟨A |ψ⟩= 0. This resembles a typical behavior of charac-
teristic functions. Within the path integral formalism, one can easily derive the semi-classical limit
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for the transition amplitude ⟨A |ψ⟩, namely

lim
h̄→0

h̄
i
⟨A |ψ⟩= χA|ψS, χA|ψ =

{
1, δSA|ψ = 0
0, δSA|ψ ̸= 0,

(13.3)

where SA|ψ stands for the relevant system’s action, and δSA|ψ is its variation. Eq. (13.3) clearly
establishes the interconnection between PA acting on |ψ⟩ and the relevant characteristic function
χA. Following the same protocol, we arrive at the quantum-classical interrelation for any gate from
the complete set. This covers the non-Abelian case also.

During the semiclassical transition, all possible trajectories reduce to the single one, which de-
scribes the classical evolution in P. That means that all information about these trajectories washes
out under the limit h̄ → 0. This loss can be estimated with the help of information entropy.

As known, in the quantum case one should deal with the von Neumann entropy. For any pure
quantum state it equals to 0. So, for the expression (13.2) one derives the zeroth entropy. However,
after the limit h̄ → 0 one should deal with the characteristic function χA splitting the phase space
onto two distinguishable domains. This allows to introduce the Shannon entropy as

HSh (χA) =−pA ln pA − (1− pA) ln(1− pA)≤ ln2. (13.4)

Here, pA =
∫
PDxχA/

∫
PDx stands for the fraction of phase space P governed by χA. The emerging

entropy for any projector operator heralds the loss of computational efficiency under the transition
from quantum proposition to its classical counterpart.

For any non-commuting operators PA,PB : PAPB −PBPA = ih̄Π, where Π is Hermitian, one should
take into account that any non-Abelian behavior disappears in the classical case. This requires
taking the partial trace over the degrees of freedom governed by Π, thus resulting in a mixed state
with some density matrix ρ and the non-zeroth von Neumann entropy

HN (ρ) =−Trρ lnρ ≤ lndimΠ. (13.5)

Here, dimΠ determines the number of Hilbert space dimensions of the operator Π. Also, each pos-
sible eigenvector of Π contributes as a separate run to the total entropy H (χ∧,Π) for either product
or conjunction. Counting this as the Shannon entropy from the relevant conditional distribution,
we arrive at the following expression

H (χ∧,Π) = HN (ρ)+
dimΠ

∑
π

|⟨ψ |π⟩|2 HSh
(
χAB|π

)
, (13.6)

where HN (ρ) is governed by (13.5), and |π⟩ is the eigenvector of Π. Quantity HSh
(
χAB|π

)
stands

for the Shannon entropy (13.4) with the fraction pAB|π =
∫

DxχA|π χB|π/
∫

Dx for the correspond-
ing conditional distribution. Note that the input should be |π⟩ instead of |ψ⟩.

Information loss H (E |S⟩) of some general quantum logical expression E can be estimated as
follows [6]

H (E |S⟩) =
q

∑
i=1

H
(

χΓAi

)
+H (χ∧,Π1)+

dimΠ1

∑
π1

|⟨ψ |π1⟩|2 H
(
χ∧,Π2|π1

)
≤ (q+ c) ln2+

c

∑
k=1

lndimΠk.

(13.7)
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Here, q stands for the number of qubits involved in no conjunction, and the operators emerging
from the corresponding commutators are denoted by Πn,n = 1,c, where c is the number of con-
junctions.

The obtained results were illustrated by the analysis of two different algorithms: the quantum
discrete Fourier transform and the Grover search algorithm. As known, their classical counter-
parts require O (n2n) and O (2n) number of steps, respectively; here, n is the number of involved
qubits (or bits). Within the approach, the estimated information loss equals to O (n2n) for the first
algorithm and to O

(
n22n/2

)
for the second one.

Conclusions

We studied in details how quantum logic can be reduced under the semiclassical limit to its clas-
sical counterpart. We estimated the emerging information loss for each elementary gate from the
complete set. The proposed technique is generalized to any quantum logical expression. The
largest loss is observed for non-commuting operators. As shown in [7], quantum algorithm may
experience changeover under the limit limh̄→0. And this can be clearly estimated with the devel-
oped technique; this also demonstrates that our method differs from the Kolmogorov complexity
approach [8].
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Optical lattice represents itself as a spatially-periodic potential produced by coherent laser beams,
where ultracold atomic gas is trapped [1]. By means of the electric field formed by the lasers,
the dipole moment of atoms is induced and interacts with the field. If the frequency of lasers is
adjusted close to the resonance frequency of atoms, the trapping potential can be formed due to the
ac Stark effect. Thus, one can consider these systems as analogs of real crystals with neutral atoms
instead of electrons. This enables the usage of optical lattices for both experimental and theoretical
purposes as a tool to simulate the real crystalline materials and verify results of different models,
for instance the Ising or Hubbard models.

In our research, we are mainly interested in the description of systems with high spin symmetries,
specifically SU(4)-symmetric fermionic mixtures. In practice, this particular high spin symmetry
can be obtained, if we choose atoms of 173Yb or 87Sr, and cool them down to the temperatures of
the order of 1 µK. A particular choice of these is based on the unique properties of alkaline-earth-
like atoms. Since fermionic isotopes of 173Yb and 87Sr have 6 and 10 nuclear spin projections,
respectively [2], one can separate atoms with the needed amount of projections via Stern-Gerlach
method. Remaining components are commonly referred to as the pseudospin flavors. The symme-
try of the interaction between flavors appears due to the fact that the outer electron shell is filled,
while the nuclear spin negligibly affects the interaction of the flavors.

In order to study quantum correlations and magnetic properties of SU(4)-symmetric systems, we
apply the Dynamical Mean Field Theory algorithm to the Hubbard model on 3D cubic lattice. The
model itself was introduced by J. Hubbard to describe the behavior of electrons in the crystals,
allowing the electrons to tunnel to neighboring sites on the lattice and interact locally with each
other [3]. The same model can be applied to optical lattices loaded with the atoms instead of
electrons, which gives an opportunity to observe certain exotic phenomena. The Hamiltonian for
SU(4)-symmetric fermionic mixture can be written as

H = Ht +HU =− ∑
⟨i, j⟩,σ ,γ

tγc†
iσ c jσ +

U
2 ∑

i,σ1 ̸=σ2

niσ1niσ2.

Here c†
iσ , ciσ and niσ stand for creation, annihilation and number operators of particle with the

flavor σ = {1,2,3,4} on the site i, respectively, meanwhile the indices of the first sum ⟨i, j⟩ should
be regarded as the summation over all adjacent sites i and j, while γ denotes the spatial direction,
e.g., γ = {x,y,z}. The first term represents tunneling to nearest-neighbor sites, while the second
one describes two-particle interactions between flavors on the same site. Is is worth noting that the
Hamiltonian itself is invariant under the action of the generators of the SU(4) symmetry.
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Figure 14.1: Phase diagram (left) of isotropic cubic lattice with visualization of different magnetic
states (right). Each color in the bar represent the probability with which every flavor appears on
the site.

Specifically, we are interested in the behavior of the system under the change of the tunneling
amplitude along a specific direction [4]. For example, in a cubic lattice with three equal tunneling
amplitudes related to crystallographic axes (tx = ty = tz), we pick one amplitude (tz) and trace how
its variation affects the phase diagram. When the chosen amplitude equals to zero, the lattice
splits into decoupled 2D planes. Each layer in this case have the same phase diagram as it is for
a 2D square lattice. Depending on the interaction strength and temperature, the system can be in
one of four different phases: a paramagnetic Fermi-liquid state in the region of small interaction
amplitudes and three insulator states – one paramagnetic (PM) and two different antiferromagnetic
(AFM), which experience specific type of ordering (long-range correlations), see Ref. [5] for more
details.

In the opposite limit of the value of the tunable hopping amplitude (tz = tx,y), one can realize an
isotropic cubic lattice. In this case, the phase diagram still has four magnetic phases depicted in
Fig. 14.1. Despite a similarity of the diagram to the one obtained for a square lattice, with the phase
transitions occurring at larger interaction amplitudes and higher temperatures, the main difference
constitutes in a specific real-space modulation in the low-temperature antiferromagnetic region
(AFM I). One can notice that in AFM I the cubic lattice can be divided into four sets of parallel
diagonals, where each site on a diagonal has the same filling by flavors. With an increase of the
temperature, this ordering breaks and only two alternating fillings of sites appear. At even higher
temperature, every site becomes equivalent to any other forming the paramagnetic phase. The
latter two orderings are identical to those occurring in 2D-layered lattice. It is worth noting that
for the studied cases an exotic behavior takes place in the vicinity of the triple point between the
Fermi-liquid phase and two antiferromagnetic phases. If the system starts in the low-temperature
region, the order vanishes naturally under the heating process, as the system undergoes transi-
tion to the paramagnetic Fermi liquid, though at even higher temperature another (two-sublattice)
antiferromagnetic phase emerges.
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Figure 14.2: Left side: Phase diagram of Mott-insulator magnetic states in dependence on
anisotropy of tunneling amplitude of optical lattice for amplitude of interaction U = 14t (tx =
ty = t). Right side: Visualization of 3D-diagonal (top) and 2D-plaquette (bottom) AFM orderings,
where different colors represent different dominating flavor.

While both limiting cases of lattice geometries can be obtained by variation of the chosen tunneling
amplitude tz, the 3D-diagonal ordering and 2D-plaquette ordering are sizeably different and cannot
be transformed into each other under a continuous transition. Hence, the discontinuity must occur
at a certain value of the hopping amplitude. To answer that question, we start with isotropic cubic
lattice with 3D-diagonal order and decrease the value of the chosen tunneling amplitude, until it
vanishes, which shows us the region of stability of this particular magnetic ordering. Similarly, we
define the region of existence of 2D-plaquette order. The combined phase diagram is presented in
Fig. 14.2. The former state does not exist at any value of the anisotropy in tunneling amplitude, but
only remains stable above tz/t ≈ 0.1. This uncertainty appears due to limitation of the Dynamical
Mean Field Theory algorithm to a certain nonzero temperature. Thus, we applied the extrapolation
of data in this region, which is depicted as a dashed line. Contrary to the 3D-diagonal AFM state,
which boundary represented by an inclined line, the boundary of plaquette state is a horizontal
line, that exists at any anisotropy and slightly increases at higher values. Hence, the region where
two states coexist is depicted on the diagram. In turn, by looking at the transition to the para-
magnetic Mott-insulator state, we conclude that the boundary resembles a part of a generalized
hyperbola, with critical temperature remaining constant in the vicinity of zero interlayer hopping
and monotonously increasing with the increase of tz.
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